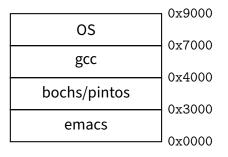
Administrivia


- Lab 1 due Friday 3pm (5pm if you attend section)
- We give will give short extensions to groups that run into trouble. But email us:
 - How much is done and left?
 - How much longer do you need?
- Attend section Friday at 3:20pm to learn about lab 2

Virtual memory

- Came out of work in late 1960s by Peter Denning (lower right)
 - Established working set model
 - Led directly to virtual memory

Want processes to co-exist

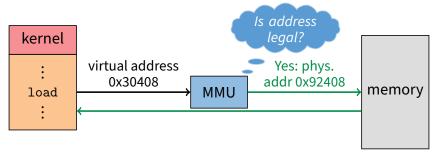
Consider multiprogramming on physical memory

- What happens if pintos needs to expand?
- If emacs needs more memory than is on the machine?
- If pintos has an error and writes to address 0x7100?
- When does gcc have to know it will run at 0x4000?
- What if emacs isn't using its memory?

Issues in sharing physical memory

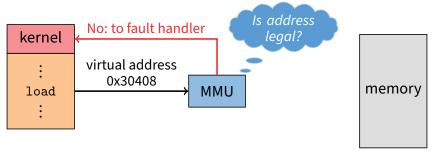
Protection

- A bug in one process can corrupt memory in another
- Must somehow prevent process A from trashing B's memory
- Also prevent *A* from even observing *B*'s memory (ssh-agent)


Transparency

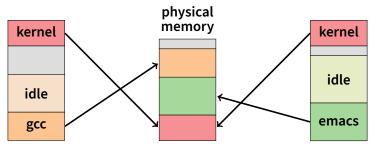
- A process shouldn't require particular physical memory bits
- Yet processes often require large amounts of contiguous memory (for stack, large data structures, etc.)

Resource exhaustion

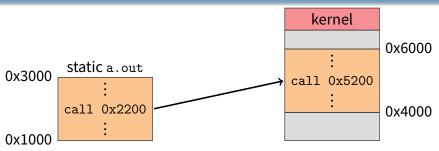

- Programmers typically assume machine has "enough" memory
- Sum of sizes of all processes often greater than physical memory

Virtual memory goals

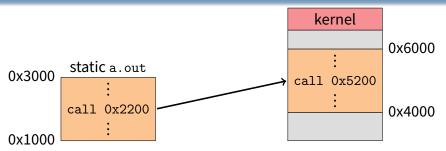
- Give each program its own virtual address space
 - At runtime, *Memory-Management Unit* relocates each load/store
 - Application doesn't see *physical* memory addresses
- Also enforce protection
 - Prevent one app from messing with another's memory
- And allow programs to see more memory than exists
 - Somehow relocate some memory accesses to disk


Virtual memory goals

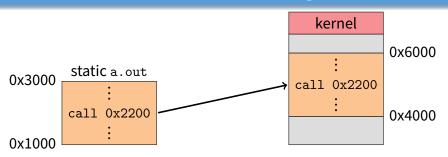
- Give each program its own virtual address space
 - At runtime, *Memory-Management Unit* relocates each load/store
 - Application doesn't see physical memory addresses
- Also enforce protection
 - Prevent one app from messing with another's memory
- And allow programs to see more memory than exists
 - Somehow relocate some memory accesses to disk


Virtual memory advantages

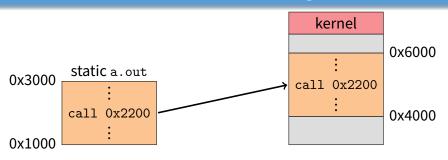
- Can re-locate program while running
 - Run partially in memory, partially on disk
- Most of a process's memory may be idle (80/20 rule).


- Write idle parts to disk until needed
- Let other processes use memory of idle part
- Like CPU virtualization: when process not using CPU, switch (Not using a memory region? switch it to another process)
- Challenge: VM = extra layer, could be slow

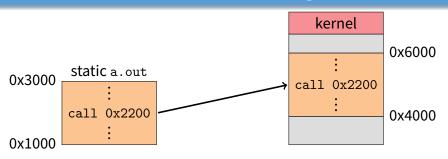
Idea 1: no hardware, load-time linking


- Linker patches addresses of symbols like printf
- Idea: link when process executed, not at compile time
 - Already have PIE (position-independent executable) for security
 - Determine where process will reside in memory at launch
 - Adjust all references within program (using addition)
- Problems?

Idea 1: no hardware, load-time linking

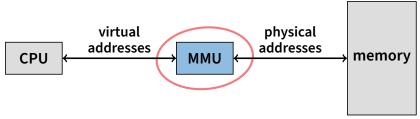

- Linker patches addresses of symbols like printf
- Idea: link when process executed, not at compile time
 - Already have PIE (position-independent executable) for security
 - Determine where process will reside in memory at launch
 - Adjust all references within program (using addition)
- Problems?
 - How to enforce protection?
 - How to move once already in memory? (consider data pointers)
 - What if no contiguous free region fits program?

Idea 2: base + bound register


- Two special privileged registers: base and bound
- On each load/store/jump:
 - Physical address = virtual address + base
 - Check 0 ≤ virtual address < bound, else trap to kernel
- How to move process in memory?
- What happens on context switch?

Idea 2: base + bound register

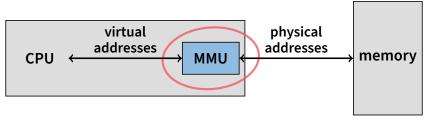
- Two special privileged registers: base and bound
- On each load/store/jump:
 - Physical address = virtual address + base
 - Check 0 ≤ virtual address < bound, else trap to kernel
- How to move process in memory?
 - Change base register
- What happens on context switch?


Idea 2: base + bound register

- Two special privileged registers: base and bound
- On each load/store/jump:
 - Physical address = virtual address + base
 - Check 0 ≤ virtual address < bound, else trap to kernel
- How to move process in memory?
 - Change base register
- What happens on context switch?
 - Kernel must re-load base and bound registers

Definitions

- Programs load/store to virtual addresses
- Actual memory uses physical addresses
- VM Hardware is Memory Management Unit (MMU)



- Usually part of CPU core (one address space per hyperthread)
- Configured through privileged instructions (e.g., load bound reg)
- Translates from virtual to physical addresses
- Gives per-process view of memory called address space

Definitions

- Programs load/store to virtual addresses
- Actual memory uses physical addresses

VM Hardware is Memory Management Unit (MMU)

- Usually part of CPU core (one address space per hyperthread)
- Configured through privileged instructions (e.g., load bound reg)
- Translates from virtual to physical addresses
- Gives per-process view of memory called address space

Base+bound trade-offs

Advantages

- Cheap in terms of hardware: only two registers
- Cheap in terms of cycles: do add and compare in parallel
- Examples: Cray-1 used this scheme

Disadvantages

Base+bound trade-offs

Advantages

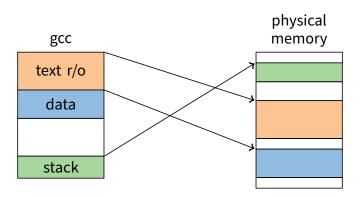
- Cheap in terms of hardware: only two registers
- Cheap in terms of cycles: do add and compare in parallel
- Examples: Cray-1 used this scheme

Disadvantages

- Growing a process is expensive or impossible
- No way to share code or data (E.g., two copies of bochs, both running pintos)

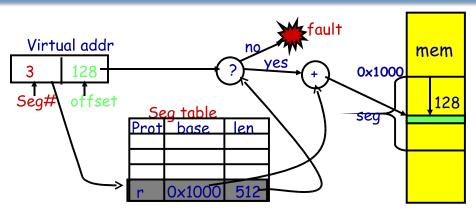
One solution: Multiple segments

- E.g., separate code, stack, data segments
- Possibly multiple data segments


free space

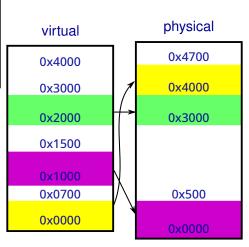
pintos2

gcc


pintos1

Segmentation

- Let processes have many base/bound regs
 - Address space built from many segments
 - Can share/protect memory at segment granularity
- Must specify segment as part of virtual address


Segmentation mechanics

- Each process has a segment table
- Each VA indicates a segment and offset:
 - Top bits of addr select segment, low bits select offset (PDP-10)
 - Or segment selected by instruction or operand (means you need wider "far" pointers to specify segment)

Segmentation example

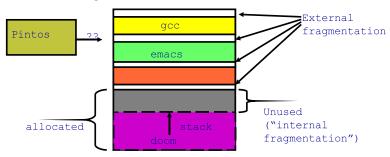
Seg	base	bounds	rw
0	0x4000	0x6ff	10
1	0x0000	0x4ff	11
2	0x3000	0xfff	11
3			00

- 2-bit segment number (1st digit), 12 bit offset (last 3)
 - Where is 0x0240? 0x1108? 0x265c? 0x3002? 0x1600?

Segmentation trade-offs

Advantages

- Multiple segments per process
- Allows sharing! (how?)
- Don't need entire process in memory


in memory gcc' where? emacs' emacs'

Disadvantages

- Requires translation hardware, which could limit performance
- Segments not completely transparent to program (e.g., default segment faster or uses shorter instruction)
- *n* byte segment needs *n contiguous* bytes of physical memory
- Makes fragmentation a real problem.

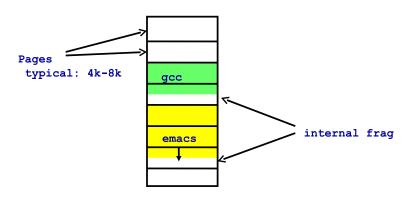
Fragmentation

- Fragmentation ⇒ Inability to use free memory
- Over time:
 - Variable-sized pieces = many small holes (external fragmentation)
 - Fixed-sized pieces = no external holes, but force internal waste (internal fragmentation)

Alternatives to hardware MMU

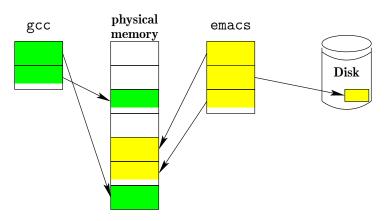
Language-level protection (JavaScript)

- Single address space for different modules
- Language enforces isolation
- Singularity OS does this with C# [Hunt]


Software fault isolation

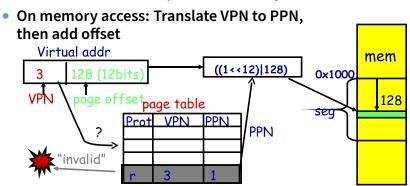
- Instrument compiler output
- Checks before every store operation prevents modules from trashing each other
- Google's now deprecated Native Client does this for x86 [Yee]
- Easier to do for virtual architecture, e.g., Wasm
- Works really well on ARM64 [Yedidia'24]

Paging


- Divide memory up into small, equal-size pages
- Map virtual pages to physical pages
 - Each process has separate mapping
- Allow OS to gain control on certain operations
 - Read-only pages trap to OS on write
 - Invalid pages trap to OS on read or write
 - OS can change mapping and resume application
- Other features sometimes found:
 - Hardware can set "accessed" and "dirty" bits
 - Control page execute permission separately from read/write
 - Control caching or memory consistency of page

Paging trade-offs

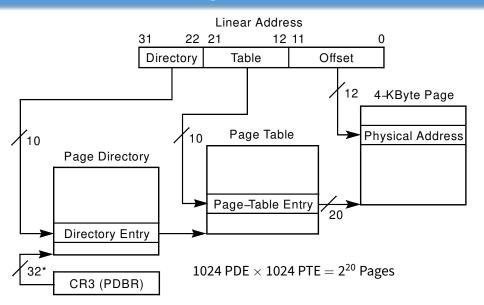
- Eliminates external fragmentation
- Simplifies allocation, free, and backing storage (swap)
- Average internal fragmentation of .5 pages per "segment"


Simplified allocation

- Allocate any physical page to any process
- Can store idle virtual pages on disk

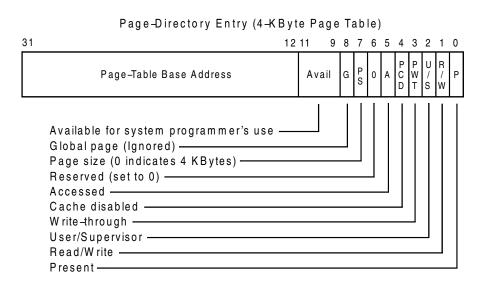
Paging data structures

- Pages are fixed size, e.g., 4 KiB
 - Least significant 12 (log₂ 4 Ki) bits of address are page offset
 - Most significant bits are page number
- Each process has a page table
 - Maps virtual page numbers (VPNs) to physical page numbers (PPNs)
 - Also includes bits for protection, validity, etc.

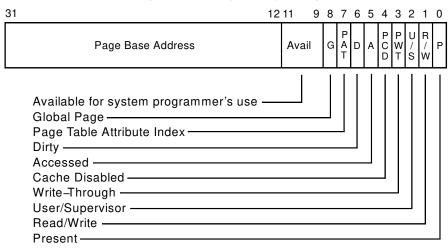

Example: Paging on PDP-11

- 64 KiB virtual memory, 8 KiB pages
 - Separate address space for instructions & data
 - I.e., can't read your own instructions with a load
- Entire page table stored in registers
 - 8 Instruction page translation registers
 - 8 Data page translations
- Swap 16 machine registers on each context switch

x86 Paging


- Paging enabled by bits in a control register (%cr0)
 - Only privileged OS code can manipulate control registers
- Normally 4 KiB pages
- %cr3: points to physical address of 4 KiB page directory
 - See pagedir_activate in Pintos
- Page directory: 1024 PDEs (page directory entries)
 - Each contains physical address of a page table
- Page table: 1024 PTEs (page table entries)
 - Each contains physical address of virtual 4K page
 - Page table covers 4 MiB of Virtual mem
- See old intel manual for simplest explanation
 - Also volume 2 of AMD64 Architecture docs
 - Also volume 3A of latest intel 64 architecture manual

x86 page translation


*32 bits aligned onto a 4-KByte boundary

x86 page directory entry

x86 page table entry

Page-Table Entry (4-KByte Page)

x86 hardware segmentation

- x86 architecture also supports segmentation
 - Segment register base + pointer val = linear address
 - Page translation happens on linear addresses
- Two levels of protection and translation check
 - Segmentation model has four privilege levels (CPL 0–3)
 - Paging only two, so 0-2 = kernel, 3 = user
- Why do you want both paging and segmentation?

x86 hardware segmentation

- x86 architecture also supports segmentation
 - Segment register base + pointer val = linear address
 - Page translation happens on linear addresses
- Two levels of protection and translation check
 - Segmentation model has four privilege levels (CPL 0–3)
 - Paging only two, so 0-2 = kernel, 3 = user
- Why do you want both paging and segmentation?
- Short answer: You don't just adds overhead
 - Most OSes use "flat mode" set base = 0, bounds = 0xffffffff
 in all segment registers, then forget about it
 - x86-64 architecture removes much segmentation support
- Long answer: Has some fringe/incidental uses
 - Keep pointer to thread-local storage w/o wasting normal register
 - 32-bit VMware runs guest OS in CPL 1 to trap stack faults
 - OpenBSD used CS limit for W∧X when no PTE NX bit

Making paging fast

x86 PTs require 3 memory references per load/store

- Look up page table address in page directory
- Look up physical page number (PPN) in page table
- Actually access physical page corresponding to virtual address

For speed, CPU caches recently used translations

- Called a translation lookaside buffer or TLB
- Typical: 64-2k entries, 4-way to fully associative, 95% hit rate
- Modern CPUs add second-level TLB with \sim 1,024+ entries; often separate instruction and data TLBs
- Each TLB entry maps a VPN \rightarrow PPN + protection information

On each memory reference

- Check TLB, if entry present get physical address fast
- If not, walk page tables, insert in TLB for next time (Must evict some entry)

TLB details

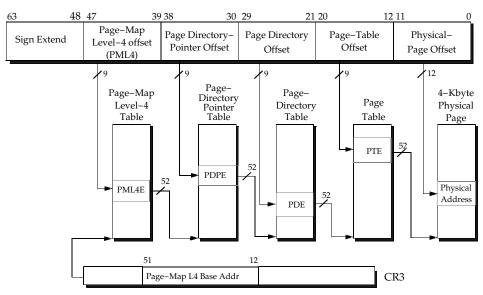
- TLB operates at CPU pipeline speed \Longrightarrow small, fast
- Complication: what to do when switching address space?
 - Flush TLB on context switch (e.g., old x86)
 - Tag each entry with associated process's ID (e.g., MIPS)
- In general, OS must manually keep TLB valid
 - Changing page table in memory won't affect cached TLB entry
- E.g., on x86 must use invlpg instruction
 - Invalidates a page translation in TLB
 - Note: very expensive instruction (100–200 cycles)
 - Must execute after changing a possibly used page table entry
 - Otherwise, hardware will miss page table change
- More Complex on a multiprocessor (TLB shootdown)
 - Requires sending an interprocessor interrupt (IPI)
 - Remote processor must execute invlpg instruction

x86 Paging Extensions

PSE: Page size extensions

Setting bit 7 in PDE makes a 4 MiB translation (no PT)

PAE Page address extensions

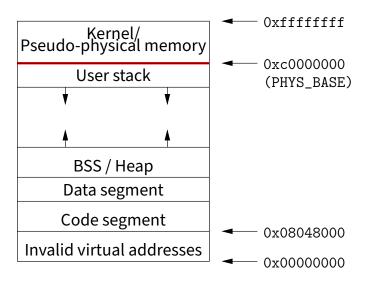

- Newer 64-bit PTE format allows 36+ bits of physical address
- Page tables, directories have only 512 entries
- Use 4-entry Page-Directory-Pointer Table to regain 2 lost bits
- PDE bit 7 allows 2 MiB translation

Long mode PAE (x86-64)

- In Long mode, pointers are 64-bits
- Extends PAE to map 48 bits of virtual address (next slide)
- Why are aren't all 64 bits of VA usable?

x86 long mode paging

Virtual Address



Where does the OS live?

• In its own address space?

- Can't do this on most hardware (e.g., syscall instruction won't switch address spaces)
- Also would make it harder to parse syscall arguments passed as pointers
- So in the same address space as process
 - Use protection bits to prohibit user code from writing kernel
- Typically all kernel text, most data at same VA in every address space
 - On x86, must manually set up page tables for this
 - Usually just map kernel in contiguous virtual memory when boot loader puts kernel into contiguous physical memory
 - Some hardware puts physical memory (kernel-only) somewhere in virtual address space
 - Typically kernel goes in high memory; with signed numbers, can mean small negative addresses (small linker relocations)

Pintos memory layout

Very different MMU: MIPS

- Hardware checks TLB on application load/store
 - References to addresses not in TLB trap to kernel
- Each TLB entry has the following fields:
 Virtual page, Pid, Page frame, NC, D, V, Global
- Kernel itself unpaged
 - All of physical memory contiguously mapped in high VM (hardwired in CPU, not just by convention as with Pintos)
 - Kernel uses these pseudo-physical addresses
- User TLB fault hander very efficient
 - Two hardware registers reserved for it
 - utlb miss handler can itself fault—allow paged page tables
- OS is free to choose page table format!

DEC Alpha MMU

Firmware managed TLB

- Like MIPS, TLB misses handled by software
- Unlike MIPS, TLB miss routines ship with machine in ROM (but copied to main memory on boot—so can be overwritten)
- Firmware known as "PAL code" (privileged architecture library)

Hardware capabilities

- 8 KiB, 64 KiB, 512 KiB, 4 MiB pages all available
- TLB supports 128 instruction/128 data entries of any size

Various other events vector directly to PAL code

call_pal instruction, TLB miss/fault, FP disabled

PAL code runs in special privileged processor mode

- Interrupts always disabled
- Have access to special instructions and registers

PAL code interface details

Examples of Digital Unix PALcode entry functions

- callsys/retsys make, return from system call
- swpctx change address spaces
- wrvptptr write virtual page table pointer
- tbi TLB invalidate

Some fields in PALcode page table entries

- GH 2-bit granularity hint $\rightarrow 2^N$ pages have same translation
- ASM address space match \rightarrow mapping applies in all processes

Example: Paging to disk

- gcc needs a new page of memory
- OS re-claims an idle page from emacs
- If page is clean (i.e., also stored on disk):
 - E.g., page of text from emacs binary on disk
 - Can always re-read same page from binary
 - So okay to discard contents now & give page to gcc
- If page is dirty (meaning memory is only copy)
 - Must write page to disk first before giving to gcc
- Either way:
 - Mark page invalid in emacs
 - emacs will fault on next access to virtual page
 - On fault, OS reads page data back from disk into new page, maps new page into emacs, resumes executing

Paging in day-to-day use

- Demand paging
- Growing the stack
- BSS page allocation
- Shared text
- Shared libraries
- Shared memory
- Copy-on-write (fork, mmap, etc.)
- Q: Which pages should have global bit set on x86?