
Pintos Project 4:
File Systems

03/01/24



Outline
— Motivation

— Project Requirements
● Buffer Cache
● Indexed and Extensible Files
● Subdirectories
● Synchronization

— Suggested Order of Implementation

— Tips



Motivation

Pintos has a very limited file system implementation.
● No support for subdirectories
● Files cannot grow after they are created
● Each file must be allocated in one contiguous space
● Requires external synchronization

In project 4, you will remove these limitations.



Getting Started

● Build on top of project 2 or project 3
● Using project 3 code can get you up to 5% extra credit

○ To do so, enable VM in src/filesys/Make.vars



Project 
Components



Buffer Cache

When a request is made to read or write to a block:
1. Attempt to retrieve data from the cache
2. If not present, fetch the block from disk into the cache

All disk accesses will go through the buffer cache.

Cache size should be no greater than 64 sectors.
● If the cache becomes full, we must perform eviction.
● The replacement algorithm for this must be at least as good as the 

clock algorithm (as measured by disk accesses).



Buffer Cache
write-behind
Keep dirty blocks in the cache, rather than immediately writing to disk. They 
will only be written to disk in the following cases:
● When they are evicted
● Periodic flush to disk (using timer_sleep or otherwise)
● When Pintos halts (in filesys_done())

read-ahead
If one block of a file is read, fetch the next block into the cache. Fetching the 
second block should be handled asynchronously, in the background.



Indexed & Extensible Files

Currently files are stored in contiguous memory.

This leads to external fragmentation: we cannot satisfy an allocation 
request of size n unless we have a single contiguous space of size n, even if 
enough aggregate disk space is available.



Indexed & Extensible Files

In project 4, you will modify struct inode_disk to eliminate this 
problem. This means using multi-level indexing: direct, indirect, and 
doubly indirect blocks.

If implemented correctly, this will allow your file system to support files 
as large as 8MB.



Indexed & Extensible Files
File system must support file growth
● Files start with size zero
● Writing past EOF expands file to specified position — bytes between old 

EOF and new write are zeroed out
● Reading from beyond the EOF returns no bytes



Subdirectories
Implement hierarchical namespace (e.g. src/filesys/foobar.txt).
● Only have to support 14-character file names, but must allow much 

longer full path names. 
● Track the current directory of a process (set to root at startup).
● Ensure child processes inherit the current directory of the parent.

Path resolution requirements
● Absolute and relative paths
● “.” and “..”



Subdirectories

Update system calls to support directories
● open() can open directories
● close() can close directories
● remove() can delete empty directories except root

Implement new system calls: chdir, mkdir, readdir, isdir, inumber



Synchronization

No more global file system lock!

Operations on independent entities should not wait on 
one another.



Synchronization — Cache Blocks

● Operations on different cache blocks must be independent.
● When I/O is required on one block, operations on other blocks that 

do not require I/O should proceed without waiting for I/O to 
complete.



Synchronization — Single File

● Concurrent reads can complete without waiting for 
one another.

● Concurrent writes can occur, as long as the file is not 
being extended.

● Extending a file and writing data to the new section 
must be atomic.



Synchronization — Directories

● Operations on different directories should take place concurrently
● Operations on the same directory can wait for one another.
● Note that each struct file and struct dir object is only 

accessed by a single thread.



Suggested Order of Implementation

1. Buffer cache
2. Extensible files
3. Subdirectories
4. Remaining items



Tips

1. Start early (as usual)
2. Implement the buffer cache at the start
3. Make sure you understand the synchronization 

requirements before you implement each component


