
Administrivia

• Project 1: Threads was due at 3pm, unless one

member of your team is here

• Project 2: Userprog is due Friday, Feb. 9

1/24

Overview

• Project 2: Userprog

- build support for running user processes

• Project requires good understanding of:

- steps for running a user program

- distinctions between user and kernel virtual memory

- system call inferface and handling

- kernel file system interface

2/24

User Programs

• What happens when a user runs (in the shell):

% cp -r herp derp

• shell parses user input

- argc = 4, argv = {"cp", "-r", "herp", "derp", NULL}

• shell calls fork() and execve(argv[0], argv, env)

• cp uses system calls to read/write files

• cp may print messages to stdout

• cp exits

3/24

System Calls

USER

KERNEL

syscall handler

ls gcc emacs

driver

network console disk

scheduler

CPU

driver driver

4/24

User Programs in Pintos

• threads/init.c

- run actions () --> run task (argv)

- run task () --> process wait (process execute (task))

• userprog/process.c:process execute()

- creates thread running start process()

- thread loads executable file

- sets up user virtual memory (stack, data, code)

⊲ user programs have no heap/malloc

- starts executing user process (start address)

5/24

Starting User Process

• lib/user/entry.c

void _start (int argc, char *argv[]) {
exit (main (argc, argv));

}

• pass process start arguments on user stack

Arg 1

Arg 0

Return Value Stack Pointer (esp)

6/24

Project 2 Requirements

You will need to implement:

• Argument Passing

• Safe memory access

• System calls (more than 60%)

• Process exit messages

• Denying write to in-use executable files

7/24

Argument passing

• In preparation to start a user process, the kernel must

push the command line arguments onto the stack

• Break command-line input to individual tokens

- from: "cp -r herp derp"

- to: {"cp", "-r", "herp", "derp"}

• strtok r(...) in lib/string.c is helpful.

8/24

Argument passing (stack)

argv

4

Return Value Stack Pointer (esp)

argv[0]

argv[1]

argv[2]

argv[3]

cp\0

-r\0

herp

\0

derp

\0

push tokens (c-strings)

push null sentinel

push address of each token

 (right to left)

push argv, push argc

push return address (0)

0

9/24

Safe Memory Access

Kernel
virtual memory

User Stack

user virtual memory

User Data

Init Data

User code

0

PHYS_BASE

4 GB

10/24

Safe Memory Access

• The kernel will often access memory through

user-provided pointers

• This is dangerous!

- null pointers

- pointers to unmapped virtual addresses

- pointers to kernel addresses

• kill the process (free its resources, e.g. locks,

memory)

• be careful with buffers, strings, any other pointers

11/24

Safe Memory Access

Two approaches to solving this problem:

• Verify every user pointer before dereference
(simpler)

- ensure it is in user’s address space (i.e. below PHYS BASE)

- ensure it is mapped (look at

userprog/pagedir.c:pagedir get page())

- for buffers, ensure for the entire buffer.

• Modify fault handler in userprog/exception.c

- ensure pointer (or buffer) is below PHYS BASE

- invalid pointers will trigger page faults

- See 3.1.5 - Accessing User Memory for more details

12/24

http://www.scs.stanford.edu/23wi-cs212/pintos/pintos_3.html#SEC39

System Calls: how do they work?

• work like normal function calls (args in stack)

• execute internal interrupt (int instruction)

- syscall handler(struct intr frame *f)

• stack pointer (f->esp) at syscall number

• calling thread data available

- to pass args to handler

- to return value to user process

• return value just like functions (f->eax)

13/24

System Calls: Implementation

• userprog/syscall.c:syscall handler()

• read syscall number at stack pointer

• dispatch a particular function to handle syscall

• read (validate!) arguments (above the stack pointer)

- above the stack pointer

- validate pointers and buffers!

• syscall numbers defined in lib/syscall-nr.h

• see 3.3.4 - System Calls for Project 2’s required calls.

14/24

http://www.scs.stanford.edu/23wi-cs212/pintos/pintos_3.html#SEC45

System Call: File System

• many syscalls involve file system functionality

• simple filesys impl is provided: filesys.h, file.h

- no need to modify it, but familiarize yourself

• file system is not thread-safe! (Project 4)

- use a coarse lock to protect it

• syscalls take file descriptors as args

- Pintos represents files with struct file *

- you must design the mapping

• special cases: reading from keyboard and writing to
console

- write(STDOUT FILENO, ...) use putbuf or putchar

- read(STDIN FILENO, ...) use input getc

15/24

System Calls: Processes

• Generally, these syscalls require the most design and

implementation time.

• pid t exec(const char *cmd line)

- like UNIX fork() + execve()

- creates a child process

- must not return until new process has been created (or creation

failed)

16/24

System Calls: Processes

• int wait (pid t pid)

- parent must block until child process pid exits

- returns exit status of the child

- must work if child has ALREADY exited

- must fail if it has already been called on child before

• void exit (int status)

- exit with status and free resources

- process termination message

- parent must be able to retrieve status via wait

17/24

System Calls: Security

• How does system recover from null pointer segfault

in user program?

• How does system recover from null pointer segfault

in kernel?

18/24

System Calls: Security

• How does system recover from null pointer segfault
in user program?

- kill user process, life goes on.

• How does system recover from null pointer segfault
in kernel?

- it (basically) doesn’t!

• Verify all user-passed memory references (pointers,

buffers, strings)

• kill user program if passed illegal addresses.

19/24

Denying writes to executables

• Executables are files like any other.

• Pintos should not allow code that is currently
running to be modified.

- use file deny write() to prevent writes to an open file

- closing a file will re-enable writes

- keep executable open as long as the process is running

20/24

Utilities: Making Disks

• user executables must be on virtual hard disk

cd pintos/src/userprog
make
pintos-mkdisk fs.dsk --filesys-size=2 /* Create 2MB disk */
pintos --disk=fs.dsk -- -f -q /* format the disk */
pintos --disk=fs.dsk -p ../examples/echo -a echo -- -q

/* copy it to disk */
pintos --disk=fs.dsk -- -q run "echo x" /* run the program */

• user code examples in src/examples

• you can write your own code to test things

- but you don’t need to.

21/24

Utilities: GDB

• you can use GDB to debug user code

• start GDB as usual, then do:

(gdb) loadusersymbols <userprog.o>

• you can set breakpoints and inspect data as usual

• user symbols will not override kernel symbols

- work around duplicate symbols by inverting order

- run gdb with:

pintos-gdb <userprog.o>

- then load the kernel symbols:

(gdb) loadusersymbols kernel.o

22/24

Getting Started

• Make a disk and add simple programs

- run make in src/examples

• temporarily setup stack to avoid page faulting

- in userprog/process.c:setup stack()

- change: *esp = PHYS BASE

- to: *esp = PHYS BASE - 12

- this will allow running programs with no args

• implement safe user memory access

23/24

Getting Started

• setup syscall dispatch

• implement exit

• implement write to STDOUT FILENO

- no tests will pass until you can write to the console

• change process wait(...) to an infinite loop

- stub implementation exits immediately

- Pintos will power off before any processes can run

• Project 1 code is generally not required

• Start early!

• Good luck!

24/24

	Administrivia
	Overview
	User Programs
	System Calls
	User Programs in Pintos
	Starting User Process
	Project 2 Requirements
	Argument passing
	Argument passing (stack)
	Safe Memory Access
	Safe Memory Access
	Safe Memory Access
	System Calls: how do they work?
	System Calls: Implementation
	System Call: File System
	System Calls: Processes
	System Calls: Processes
	System Calls: Security
	System Calls: Security
	Denying writes to executables
	Utilities: Making Disks
	Utilities: GDB
	Getting Started
	Getting Started

