
CS 112/212 Section 1,
Project 1: Threads
Gordon Martinez-Piedra

Plan for Today

● How to get started with Pintos

● Explain Project 1 Requirements

● Tip & Tidbits!

How to get started with
Pintos?

READ BEFORE WRITE!

Read Appendices A1-A5 - essential for doing this project A2,3,4 are MOST important

Then start setting up Pintos

Familiarize yourself with debugging in pintos

Try tracing through program execution with GDB

Read code in the relevant files that you will be changing and trace through execution with help of A1 and A2 and

Proj 1.

https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_6.html#SEC91
https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_1.html#SEC1
https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_10.html#SEC145
https://www.scs.stanford.edu/24wi-cs212/pintos/pintos_2.html#SEC15

Overview of Requirements

Requirements
1. Alarm Clock

a. Re-implement timer_sleep() without busy waiting

2. Priority Scheduler

a. Threads set their own priorities, and run according to these priorities

b. Priority donation for locks

3. Advanced Scheduler

a. Thread priorities are calculated by the system, and run according to these priorities

b. No priority donation

4. Design Doc

a. Answer questions regarding your design and implementation for parts 1-3

Grading

50% DESIGN

50% Tests

Requirement 1: Alarm Clock

Alarm Clock Overview

Currently we do busy waiting with
thread_yield() loop.

Call timer_sleep() to make current thread
sleep for give # of ticks

Alarm Clock Overview

Your job - re-implement timer_sleep() with synchronization primitives

Key Considerations:

● How will you avoid busy waiting?

● How will you keep track of sleeping threads?

● Where in the code will you wake up sleeping threads?

● Check out the design doc to see what race conditions you should watch

out for!

Questions?

Requirement 2: Priority
Scheduling

Priority Scheduling Overview

● Threads with higher priority should be run first (minimum priority = 0, PRI_DEFAULT=31,

PRI_MAX = 63)

● When threads are waiting on synchronization primitives (lock, semaphore, condition variable)

highest priority waiting thread should be wakened first

● Implement priority donation for locks to deal with PRIORITY INVERSION

Priority Inversion Problem

The Priority Inversion Problem

Thread L

Original priority: 1

Lock

Holder = NULL

The Priority Inversion Problem

Thread L (RUNNING)

Original priority: 1

Lock

Holder = Thread L

The Priority Inversion Problem

Thread L

Original priority: 1

Thread M

Original priority: 35

Lock

Holder = Thread L

Thread H (RUNNING)

Original priority: 63

The Priority Inversion Problem

Thread L

Original priority: 1

Thread M (RUNNING)

Original priority: 35

Lock

Holder = Thread L

Thread H

Original priority: 63

● Thread H is taken off of CPU,
because it is waiting for Lock

● Thread M will run because it has a
higher priority than Thread L

● Therefore, Thread L will not release
the lock → Thread H will not get to
run

waiting on

Priority Donation: Example 1 (to Fix Priority Inversion)

Thread L (RUNNING)
Donated Priority (from Thread H): 63
Original priority: 1

Thread M

Original priority: 35

Lock

Holder = Thread L

Thread H

Original priority: 63

● When Thread H tries to
acquire Lock, it donates its
priority to Thread L

● Now, Thread L will get to run

waiting on

Priority Donation: Example 1

Thread L

Original priority: 1

Thread M

Original priority: 35

Lock

Holder = Thread H

Thread H

Original priority: 63

● When Thread L releases Lock, it releases
the priority donations as well

● Thread H now acquires Lock

Priority Donation Example 2: Multiple Donations

Thread L (RUNNING)

Original priority: 1

Lock 1

Holder = Thread L

Lock 2

Holder = Thread L

Priority Donation Example 2: Multiple Donations

Thread L (RUNNING)
Donated Priority: 35
Original priority: 1

Lock 1

Holder = Thread L

Lock 2

Holder = Thread L
Thread M

Original priority: 35

Thread M tries to acquire Lock 1, so
donates its priority to Thread L

waiti
ng on

Priority Donation Example 2: Multiple Donations

Thread L (RUNNING)
Donated Priority: 63, 35
Original priority: 1

Lock 1

Holder = Thread L

Lock 2

Holder = Thread L
Thread M

Original priority: 35

Thread H

Original priority: 63

Thread H tries to acquire Lock 2, so
donates its priority to Thread L

waiti
ng on

waiti
ng on

Priority Donation Example 2: Multiple Donations

Thread L (RUNNING)
Donated Priority: 63
Original priority: 1

Lock 1

Holder = Thread M

Lock 2

Holder = Thread L
Thread M

Original priority: 35

Thread H

Original priority: 63

waiti
ng on

Thread L releases Lock 1 and gives
back its donation

Priority Donation Example 2: Multiple Donations

Thread L

Original priority: 1

Lock 1

Holder = Thread M

Lock 2

Holder = Thread H
Thread M

Original priority: 35

Thread H (RUNNING)

Original priority: 63

Thread L releases Lock 2 and gives
back its donation

Priority Donation Example 3: Nested Donations

Thread L

Original priority: 1

Thread M (RUNNING)

Original priority: 35

Lock 1

Holder = Thread L

Lock 2

Holder = Thread M

Priority Donation Example 3: Nested Donations

Thread L (RUNNING)
Donated priority: 35
Original priority: 1

Thread M

Original priority: 35

Lock 1

Holder = Thread L

Lock 2

Holder = Thread M

waiting on

Priority Donation Example 3: Nested Donations

Thread L (RUNNING)
Donated priority: 63
Original priority: 1

Thread M
Donated priority: 63
Original priority: 35

Lock 1

Holder = Thread L

Thread H

Original priority: 63

Lock 2

Holder = Thread M

waiting on

waiting on

Note: You may impose a reasonable
limit on depth of nested priority donation,
such as 8 levels

Priority Scheduling: Key Questions

● What data structure will you use to track priority donations?

● When are priority donations given, when are they returned?

● How will you ensure that the highest priority thread waiting on a synchronization

primitive is woken up first?

Questions?

Requirement 3: Multi-level
feedback queue scheduler

MLFS: Overview

Q0

Q63

Q62

T1 T5 T4

T0

T2 T3

. .
 .

● Scheduler chooses a thread from the
highest-priority non-empty queue

● If the highest-priority queue contains
multiple threads, then they run in "round
robin" order

MLFS: Overview

● Thread priority is dynamically determined by the scheduler using a formula given
below, recalculated once every fourth timer tick for every thread for which
recent_cpu has changed
○ priority = PRI_MAX - (recent_cpu / 4) - (nice * 2)
○ Detailed explanations of how/when to calculate recent_cpu and nice are here: B. 4.4BSD

Scheduler
○ Also covered in Week 2, Lecture 2 - Scheduling
○ No priority donation

● We recommend that you have the priority scheduler working, except possibly for
priority donation, before you start work on the advanced scheduler

https://www.scs.stanford.edu/23wi-cs212/pintos/pintos_7.html#SEC131
https://www.scs.stanford.edu/23wi-cs212/pintos/pintos_7.html#SEC131

MLFS: Fixed Point Math

● Calculations for the MLFS e.g. recent_cpu and load_avg involve both integers and real

numbers

● Floating-point arithmetic in the kernel would complicate and slow the kernel →

Pintos and other real kernels do not support it → calculations on real quantities must

be simulated using integers

● You will have to carefully implement fixed point arithmetic to perform calculations
for your advanced scheduler

https://www.scs.stanford.edu/23wi-cs212/pintos/pintos_7.html#SEC131

Questions?

Requirement 4: Design Doc

Design Doc: Overview

● Not like previous CS classes you have taken - DESIGN IS 50% OF YOUR GRADE

● Read through the design doc BEFORE writing any code – it will help you understand

the important design problems you need to solve

● I would recommend writing your design doc for each section of the project BEFORE

writing any code to ensure you are meeting design criteria, then update it as your

design evolves!

Design Advice
Make sure each line is fewer than 80 characters

In VS Code Code >> Settings >> Settings

User search bar and type in “Ruler” and click on “Edit in settings.json”, add value 80!

Design Advice

Meet up as a team and figure out design together

Spend as much time working all together as a team as possible!

DO NOT RUSH TO START CODING - read documentation, codebase and design doc thoroughly

Key things to understand before:

● How do timer interrupts work?
● How does sleeping work now?
● How does synchronization work now?

Integrate code changes early and often (small, incremental commits)

Conform to style of the given code - guidelines

https://www.scs.stanford.edu/23wi-cs212/pintos/pintos_8.html

Good Luck!

